页面标题
团队教师
团队教师

【姓名】吴志军

【职称】教授、院长

【地址】工学部十教310

【邮箱】zhijunwu@whu.edu.cn

【研究方向】深部工程灾变机制与防控技术、深部能源工程多场耦合效应与数值模拟方法、深部工程智能与安全高效掘进

  • 教育与工作背景
  • 发表论文
  • 获奖成就

教育经历
2009.12-2013.09    新加坡南洋理工大学 岩土工程专业 博士  导师:Prof. Louis Wong

2005.09-2007.07    浙江大学 防灾减灾及防护工程专业 硕士  导师:尚岳全教授

2001.09-2005.07    浙江大学 结构工程 学士


工作经历

2024.01-至今      武汉大学土木建筑工程学院 院长

2023.01-至今      国家自然科学基金委地学三处流动项目主任

2024.03-至今      非煤露天矿山灾害防控国家安全监察局重点实验室副主任

2020.09-2024.01      武汉大学土木建筑工程学院 副院长

2016.04--至今      武汉大学土木建筑工程学院 教授

2015.05-2016.04    武汉大学土木建筑工程学院 特聘研究员

2013.09-2015.05    新加坡南洋理工大学防护技术中心 Research Fellow

长期致力于岩土工程计算方法、深部工程灾变机制及安全控制方面的研究工作。先后主持国家级青年人才项目、国家自然科学基金面上项目、国家重点研发计划子课题、湖北省杰出青年基金项目、湖北省创新群体项目等10余项,在《International Journal of Rock Mechanicand Mining Sciences》《Rock Mechanics and Rock Engineering》《岩石力学与工程学报》等国内外主流权威期刊发表论文130余篇(其中第一/通讯作者SCI论文91篇,EI 11篇,中科院二区以上 70篇),授权国家发明专利 11项,担任RMGE、BOEG、岩石力学与工程学报、岩土力学等期刊编委以及中国岩石力学与工程学会岩石破碎工程专委会、青年工作委员会、软岩工程与深部灾害控制分会副主任委员或理事等兼职。先后获国际非连续变形分析组织“杰出研究者奖”、中国岩石力学与工程学会“钱七虎奖”以及“侨界贡献奖”等荣誉,入选2022年、2023年爱思唯尔“中国高被引学者”和2022年、2023年斯坦福大学全球“前2%顶尖科学家”榜单,获国家级学成果二等奖( 排名3)以及省部级科技进步二等奖各一项(排名2、2 )。

个人Scopus主页:https://www.scopus.com/authid/detail.uri?authorId=57219696064

[1]        ZJ Wu, LNY Wong, (2012), Frictional crack initiation   and propagation analysis using the numerical manifold method, Computers and   Geotechnics, 39, 38-53. (ESI highly   cited paper, 2017 Outstanding paper award, Most cited article since 2012,2013-2017共999篇刊文中仅5 篇获此殊荣)

[2]        ZJ Wu, LNY Wong, (2013), Elastic-plastic cracking   analysis for brittle-ductile rocks using manifold method, International   Journal of Fracture, 180 (1), 71-91.

[3]        ZJ Wu, LNY Wong, (2013), Modeling cracking behavior   of rock mass containing inclusions using the enriched numerical manifold   method, Engineering Geology, 162, 1-13.

[4]        ZJ Wu, LNY Wong, LF Fan, (2013), Dynamic study on   fracture problems in viscoelastic sedimentary rocks using the numerical   manifold method, Rock Mechanics and Rock Engineering, 46 (6), 1415-1427.

[5]        LNY Wong, ZJ   Wu*, (2014), Application of the numerical manifold method to model progressive   failure in rock slopes, Engineering Fracture Mechanics 119, 1-20

[6]        ZJ Wu, LF Fan, (2014), The numerical manifold method   for elastic wave propagation in rock with time-dependent absorbing boundary   conditions, Engineering Analysis with Boundary Elements, 46, 41-50.

[7]        ZJ Wu, LNY Wong, (2014), Underground rockfall   stability analysis using the numerical manifold method, Advances in   Engineering Software, 76, 69-85.

[8]        ZJ Wu, LNY Wong, (2014), Extension of numerical   manifold method for coupled fluid flow and fracturing problems, International   Journal for Numerical and Analytical Methods in Geomechanics. 38, 1990-2008.

[9]        ZJ Wu, LNY Wong, (2014), Investigating the effects   of micro-defects on the dynamic properties of rock using Numerical Manifold   method, Construction and Building Materials, 72, 72-82.

[10]     X Liang, ZJ   Wu*, LZ Wang, GH Liu, ZY Wang, WG Zhang, (2014), Semi-analytical   three-dimensional solutions for the transient response of functionally graded   material rectangular plates, Journal of Engineering Mechanics(ASCE), 141,   04015027.

[11]     ZJ Wu, X Liang, QS Liu, (2015), Numerical   investigation of rock heterogeneity effect on rock dynamic strength and   failure process using cohesive fracture model, Engineering Geology, 197,   198-210

[12]     SC Fan, CK   Lee, KW Kang, ZJ Wu*, (2015), Validation of a flight model for   predicting debris trajectory from the explosion of an ammunition storage   magazine, Journal of Wind Engineering and Industrial Aerodynamics 136,   114-126.

[13]     LF Fan, ZJ   Wu*, (2016), Evaluation of stress wave propagation through   rock mass using a modified dominate frequency method, Journal of Applied Geophysics, 132, 53-59.

[14]     ZJ Wu, LF Fan, QS Liu, GW Ma,   (2017), Micro-mechanical modeling of the macro-mechanical response and   fracture behavior of rock using the numerical manifold method, Engineering Geology, 225, 49-60. (ESI highly cited paper, most highly cited paper since 2017, 2014~2019年共1260篇刊文中仅5篇获此殊荣)

[15]     LF Fan, ZJ   Wu*, Z Wan, JW Gao, (2017), Experimental investigation of thermal effects   on dynamic behavior of granite,   Applied Thermal Engineering, 125, 94-103. (ESI highly cited paper,2014-2017 年共5120 篇刊文中仅5 篇获此殊荣)

[16]     J He, QS   Liu, ZJ Wu*, (2017), Creep crack analysis of viscoelastic material   by numerical manifold method,   Engineering Analysis with Boundary Elements, 80, 72-86.

[17]     XH Pan, HY   Sun, ZJ Wu*, Q Lü, (2017), study of the failure mechanism and progressive   failure process of intact rock patches of rock slope with weak surfaces, Rock Mechanics and Rock Engineering, 50 (4),   951-966.

[18]     YJ Shen, ZJ   Wu*, ZL Xiang, M, Yang, (2017), Physical test study on   double-row-long-short composite anti-sliding piles, Geomechanics and Engineering,   An International Journal, 13(4), 621-640.

[19]     J He, QS Liu, ZJ Wu*, XY Xu, (2017), Modelling transient heat conduction of granular materials by   numerical manifold method, Engineering Analysis with   Boundary Elements, 86, 45-55.

[20]     QS Liu, ZC   Qian, ZJ Wu*, (2017), Micro/macro physical and mechanical   variation of red sandstone subjected to cyclic heating and cooling: An   Experimental Study. Bulletin of Engineering Geology and the Environment,   78(3), 1485-1499. (ESI highly cited paper)

[21]   QS Liu, YL Jiang, ZJ Wu*, XY Xu,   Qi Liu, (2017), Investigation of the rock fragmentation process by a single TBM   cutter using a Voronoi element-based numerical manifold method, Rock   Mechanics and Rock Engineering,   51(4), 1137-1152.

[22]     ZJ Wu, LF Fan, and SH Zhao, (2018), Effects of   hydraulic gradient, intersecting angle, aperture and fracture length on the   nonlinearity of fluid flow in smooth intersecting fractures: an experimental   investigation, Geofluids, 10.1155/2018/9352608.

[23]     L Weng, ZJ Wu*, XB Li, (2018), Mesodamage Characteristics   of Rock with a Pre-cut Opening Under Combined Static–Dynamic Loads: A Nuclear   Magnetic Resonance (NMR) Investigation, Rock Mechanics and Rock Engineering. 10.1007/s00603-018-1483-4.

[24]     QS Liu, YL   Jiang, ZJ Wu*, J He, (2018),   A Voronoi element based - numerical manifold method (VE-NMM) for Investigating   micro/macro-mechanical properties of intact rocks, Engineering fracture   Mechanics, 199, 71-85.

[25]     QS Liu, YL   Jiang, ZJ Wu*, ZC Qian, XY Xu, (2018), Numerical modeling of   acoustic emission during rock failure process using a Voronoi element   based-explicit numerical manifold method, Tunnelling and Underground Space   Technology, 79, 175-189.

[26]     J He, Q   Liu, Z Wu*, Y Jiang,   (2018), Geothermal-related thermo-elastic fracture analysis by numerical   manifold method, Energies, 11, 19961073.

[27]     ZJ Wu, LL Ma, LF Fan, (2018), Investigation of the   characteristics of rock fracture process zone using coupled FEM/DEM method,   Engineering Fracture Mechanics, 200, 355-374.

[28]     L Weng, ZJ Wu*, QS Liu, (2018), Use of NMR   testing technique to evaluate the damage and microcracking behavior of   granite under different levels of unconfined compression, International   Journal of Geomechanics, 19 (1), 04018186.

[29]     ZJ Wu, XY Xu, QS Liu, YT Yang, (2018), A   zero-thickness cohesive element-based numerical manifold method for rock   mechanical behavior with micro-Voronoi grains, Engineering Analysis with   Boundary Element Methods, 96, 94-10.

[30]     ZJ Wu, YL Jiang, QS Liu, H Mao, (2018),   Investigation of the excavation damaged zone around deep TBM tunnel using a   Voronoi-Element based explicit numerical manifold method, International   Journal of Rock Mechanics and Mining Sciences, 112, 158-170.

[31]     LF Fan, LJ   Wang, ZJ Wu*, (2018), Wave transmission across linearly jointed   complex formation, International Journal of Rock Mechanics and Mining Sciences,   112, 193-200.

[32]   ZJ Wu, H Sun, L.N.Y. Wong (2019), A cohesive   element-based numerical manifold method for hydraulic fracturing modelling   with Voronoi grains, Rock Mechanics and Rock Engineering, 1717-5.

[33]     ZJ Wu, PL Zhang, LF Fan, QS Liu (2019), Numerical   study of the effect of confining pressure on the rock breakage efficiency and   fragment size distribution of a TBM cutter using a coupled FEM-DEM method,   Tunnelling and Underground Space Technology, 88, 260-275.

[34]     ZJ Wu, PL Zhang, LF Fan, QS Liu (2019), Debris   characteristics and scattering pattern analysis of reinforced concrete slabs   subjected to internal blast loads - a numerical study, International Journal   of Impact Engineering, 131, 1-16.

[35]   L Weng, ZJ Wu*,   QS Liu, (2019), Numerical analysis of degradation characteristics for   heterogeneous rock under coupled thermo-mechanical conditions, International   Journal of Geomechanics, 19, 04019111.

[36]   ZJ Wu, WJ Cui, LF Fan, QS Liu, (2019), Mesomechanism of   the dynamic tensile fracture and fragmentation behavior of concrete with   heterogeneous mesostructure, Construction and Building Material, 217, 573-591.

[37]   ZJ Wu, Y Zhou, LF Fan, (2019), A fracture aperture   dependent thermal-cohesive coupled model for modelling thermal conduction in   fractured rock mass, Computers and Geotechnics, 114, 103108.

[38]     LF Fan, XF Zhou, ZJ Wu*, LJ Wang, (2019),   Investigation of stress wave induced cracking behavior of underground rock   mass by the numerical manifold method, Tunnelling and Underground Space   Technology, 92, 103032.

[39]     ZJ Wu*,   B Zhang, L Weng, QS Liu, LNY Wong, (2019), A new way to replicate the   highly-stressed soft rock: 3D printing exploration, Rock Mechanics and Rock   Engineering, 53(1), 467-476.

[40]   L Weng, ZJ Wu*,   QS Liu, Z Wang, (2019), Energy dissipation and dynamic fragmentation of dry and   water-saturated siltstones under sub-zero temperatures, Engineering Fracture Mechanics, 220, 106659.

[41]   ZJ Wu, FZ Yu, PL Zhang, XW   Liu, (2019), Micro-mechanism study on rock breaking behavior under water jet   impact using coupled SPH-FEM/DEM method with Voronoi grains, Engineering Analysis with Boundary Elements, 108, 472-483.

[42]   ZF Chu, ZJ Wu*,   BG Liu, QS Liu, (2019), Coupled analytical solutions for deep-buried circular lined   tunnels considering tunnel face advancement and soft rock rheology effects, Tunnelling and Underground Space Technology, 94, 103111.

[43]   LF Fan, HD Wang, ZJ Wu*,   SH Zhao (2019), Effects of angle patterns at fracture intersections on fluid   flow nonlinearity and outlet flow rate distribution at high Reynolds numbers,   International Journal of Rock Mechanics and Mining Sciences, 124, 104136.

[44]     L Weng, ZJ Wu*, A Taheri, QS Liu, H Lu,   (2020), Deterioration of dynamic mechanical properties of granite due to   freeze-thaw weathering: Considering the effects of moisture conditions, Cold   Regions Science and Technology, 176, 103092.

[45]     ZF Chu, ZJ Wu*, QS Liu, BG Liu, (2020), Analytical   solutions for deep-buried lined tunnels considering longitudinal   discontinuous excavation in rheological rock Mass, Journal of Engineering   Mechanics, 146(6), 04020047.

[46]     ZJ Wu*, XK Ji, QS Liu, LF Fan, (2020), Study of microstructure effect   on the nonlinear mechanical behavior and failure process of rock using an   image-based-FDEM model, Computers and Geotechnics, 121, 103480.

[47]     L Weng, ZJ Wu*, QS Liu, (2020), Influence of   heating/cooling cycles on the micro/macrocracking characteristics of Rucheng   granite under unconfined compression, Bulletin of Engineering Geology and the   Environment, 79(3), 1289-1309.

[48]     LF Fan, C Xu, ZJ Wu*, (2020), Effects of cyclic   freezing and thawing on the mechanical behavior of dried and saturated   sandstone, Bulletin of Engineering Geology and the Environment, 79(2),   755-765

[49]     QS   Liu, XY Xu, ZJ Wu*, (2020),   A GPU-based numerical manifold method for modeling the formation of the   excavation damaged zone in deep rock tunnels, Computers and Geotechnics, 118,103351.

[50]     L Weng, ZJ Wu, QS Liu, (2020), Dynamic mechanical   properties of dry and water-saturated siltstones under sub-zero temperatures, Rock Mechanics and   Rock Engineering, 10.1007/s00603-019-02039-5.

[51]     ZJ Wu, Y   Zhou, L Weng, QS   Liu, Y Xiao,   (2020), Investigation of   thermal-induced damage in fractured rock mass by coupled FEM-DEM method, Computational   Geosciences, 10.1007/s10596-020-09970-5.

[52]     ZJ Wu, MY Li, L Weng, QS Liu, (2020), A thermal-stress-aperture   coupled model for analyzing the thermal failure of fractured rock mass,   International Journal of Geomechanics, 20 (10), 04020176.

[53]     LF Fan, JW Gao, XL Du, ZJ Wu*, (2020), Spatial gradient   distributions of thermal shock-induced damage to granite, Journal of Rock   Mechanics and Geotechnical Engineering, 10.1016/j.jrmge.2020.05.004(自2020 年以来Most Cited Articles,排名1/277)

[54]     LF Fan, M Wang, ZJ Wu*, (2020), A split   three-characteristics method for stress wave propagation through a rock mass   with double-scale discontinuities, Rock Mechanics and Rock Engineering,   53(12), 5767-5779.

[55]     LF Fan, LJ Wang, M Wang, ZJ Wu*, (2020), Investigation of   stress wave transmission across a nonlinearly jointed complex rock mass,   International Journal of Rock Mechanics and Mining Sciences, 136, 104485.

[56]     LF Fan, LJ Wang, ZJ Wu*, (2020) An investigation of   propagation direction induced difference of transmission coefficient in   complex rock mass, International Journal of Rock Mechanics and Mining   Sciences, 135, 104504.

[57]     LF Fan, M Wang, ZJ Wu*, (2020), Effect of nonlinear   deformational macro joint on stress wave propagation through a double-scale   discontinuous rock mass, Rock Mechanics and Rock Engineering, 54(3),   1077-1090.

[58]   ZF Chu, ZJ   Wu*, BG Liu, QS Liu, (2021), Analytical solution for lined   circular tunnels in deep viscoelastic Burgers rock considering the   longitudinal discontinuous excavation and sequential installation of liners,   Journal of Engineering Mechanics, ASCE, 147(4), 04021009. (ESI highly cited paper)

[59]     H Sun, ZJ Wu*, L Zheng, Y Yang, D Huang,   (2021), An extended numerical manifold method for unsaturated soil-water   interaction analysis at micro-scale, International Journal for Numerical and   Analytical Methods in Geomechanics, 10.1002/nag.3211.

[60]     L Weng, ZJ Wu*, QS Liu, ZF Chu, SL Zhang,   (2021), Evolutions of the unfrozen water content of saturated sandstones   during freezing process and the freeze-induced damage characteristics, International   Journal of Rock Mechanics and Mining Sciences, 152, 105060.

[61]     Y Zhou, ZJ Wu*, L Weng, QS Liu, (2021),   Seepage characteristics of chemical grout flow in porous sandstone with a   fracture under different temperature conditions: an NMR based experimental   investigation, International Journal of Rock Mechanics and Mining Sciences,   135, 104504.

[62]     XY Xu, ZJ Wu*, H Sun, L Weng, ZF Chu, QS   Liu, (2021), An extended numerical manifold method for simulation of grouting   reinforcement in deep rock tunnels, Tunnelling and Underground Space   Technology, 115 (2021) 104020.

[63]     MY Li, ZJ Wu*, L Weng, J Ji, QS Liu, (2021),   Numerical investigation of coupled effects of temperature and confining   pressure on rock mechanical properties in fractured rock mass using the   thermal-stress-aperture coupled model, International Journal of Geomechanics,   1943-5622.0002171.

[64]     ZF Chu, ZJ Wu*, QS Liu, W Lei, ZY Wang, Y   Zhou, (2021), Evaluating the microstructure evolution behaviors of saturated   sandstone using NMR testing under uniaxial short-term and creep compression,   Rock Mechanics and Rock Engineering, 54(3), 1077-1090.

[65]     ZY Wang ZY, ZJ Wu*, LF Fan, L Weng, QS Liu, (2021), An improved wave velocity model for acoustic   emission source localization in heterogeneous rock materials with unknown   inclusions, Journal of Engineering Mechanics, 148, 04021122.

[66]     ZJ Wu*, ZY Wang, LF Fan, L Weng, QS Liu, (2021), Micro-failure process and   failure mechanism of brittle rock under uniaxial compression using continuous   real-time wave velocity measurement, Journal of Central   South University, 28(2), 556-571.

[67]     ZF Chu, ZJ Wu*, QS Liu, (2021),   Micro-mechanism of brittle creep in saturated sandstone and its mechanical   behavior after creep damage, International Journal of Rock Mechanics and   Mining Sciences, 149: 104994.

[68]     ZJ Wu, RL Wei, ZF Chu, QS Liu, (2021), Real-time rock mass condition prediction with TBM tunneling big   data using a novel rock-machine mutual feedback perception method, Journal of rock mechanics and geotechnical engineering,   1311-1325.

[69]     ZF Chu, ZJ Wu*, BG Liu, K Wu, XM Shi, QS Liu,   (2022), Mechanical response of inclined TBM tunnel due to drainage settlement   of deep sandstone aquifer, Tunnelling and Undergroud Space Technology, 112,   104393.

[70]     L Weng, ZJ Wu*, SL Zhang, QS Liu, ZF Chu,   (2022), Real-time characterization of the grouting diffusion process in   fractured sandstone based on the low-field nuclear magnetic resonance   technique, International Journal of Rock Mechanics and Mining Science, 152,   105060.

[71]     XY Xu, ZJ Wu*,   QS Liu, (2022), An improved numerical manifold method for investigating the   mechanism of tunnel supports to prevent large squeezing deformation hazards   in deep tunnels, Computers and Geotechnics, 151, 104941.

[72]     H Sun, F Xiong, ZJ Wu*, J Ji, LF Fan, (2022), An   extended numerical manifold method for two-phase seepage-stress coupling   process modelling in fractured porous medium, Computer Methods in Applied   Mechanics and Engineering, 391, 114514.

[73]     PL Zhang, ZJ Wu*, WJ Cui, (2022),   Mesoscopic investigation on the mechanism of concrete dynamic tensile   strength enhancement based on the E (A, B) algorithm, Construction and   Building Materials, 329, 127183.

[74]     ZJ Wu, WJ Cui, L Weng, QS Liu*, (2022), A 2D FDEM-based THM coupling   scheme for modeling deformation and fracturing of the rock mass under THM   effects, Computers and Geotechnics, 152, 105019.

[75]     PL Zhang, ZJ Wu*, JL Sun, Y Liu, ZF Chu, (2022),   Experimental and numerical studies of the impact breakage of granite with   high ejection velocities, PLoS ONE, 17(4), e0266241.

[76]     MY Li, ZJ Wu*, L Weng, QS Liu, ZF Chu,   (2022), Quantitative relationships between the mineral composition and macro   mechanical behaviors of granite under different temperatures: insights from   mesostructure-based DEM investigations, Computers and Geotechnics, 104838.

[77]     ZY Wang, ZJ Wu*,   ZF Chu, L Weng, Y Liu, QS Liu, (2022), Study on mesoscopic failure mechanism   of grout-infilled sandstone under uniaxial compression using an improved AE   localization technique, International Journal of Rock Mechanics and Mining   Sciences, 160: 105275.

[78]     ZJ Wu*, ZY Wang, Y Wu, XY Wang, QS Liu, YW Li, (2022), A method for   accurate measuring the tensile strength of single rock grain interface, Rock   Mechanics and Rock Engineering, 2022, 1-10.

[79]   L Weng, ZJ Wu*, ZY Wang, ZF Chu, XY Xu, QS Liu.   (2023), Acoustic Emission Source Localization in Heterogeneous rocks with   random inclusions using a PRM-based wave velocity model, Rock Mechanics and Rock Engineering, 56(5):   3301-3315.

[80]   MY Li, ZJ Wu*,   L Weng, Y Wu, ZY Wang, QS Liu, (2023), Tensile strength degradations of   mineral grain interfaces (MGIs) of granite after thermo-hydro-mechanical   (THM) treatment, International Journal of Rock Mechanics and Mining Sciences,   171, 105592.

[81]   ZJ Wu, RF Zhao, XY Xu*, QS   Liu, MY Liu, (2023), Data-driven enhanced FDEM for simulating the rock   mechanical behavior, International Journal of Mechanical Sciences, 108709.

[82]   XY Xu, ZJ Wu*,   L Weng, ZF Chu, QS Liu, Y Zhou, (2023), Numerical investigation of geostress   influence on the grouting reinforcement effectiveness of tunnel surrounding   rock mass in fault fracture zones, Journal of Rock Mechanics and Geotechnical   Engineering, 13, 134-156.

[83]     Y Liu, ZJ Wu*,   L Weng, LJ Wu, XY Xu, QS Liu, (2023), Experimental study on the grouting   diffusion process in fractured sandstone with flowing water based on the   low-field nuclear magnetic resonance technique, Rock Mechanics Rock   Engineering, 56, 7509-7533.

[84]   LJ Wu, ZJ Wu*,   L Weng, Y Liu, QS Liu, (2023), Investigation on basic properties and   microscopic mechanisms of polyacrylate latex modified cement grouting   material for water blocking and reinforcement, Construction and Building   Materials, 409: 133872.

[85]     ZJ Wu, WJ Cui, L Weng, QS Liu*, (2023),   Modeling geothermal heat extraction-induced potential fault activation by   developing an FDEM-based THM coupling scheme, Rock Mechanics and Rock   Engineering, 1-21.

[86]     ZY Wang, YW Li*, ZJ   Wu*, (2023), Hierarchical scaling model for size effect on tensile   strength of polycrystalline rock, International Journal of Mechanical   Sciences, 2023: 108171.

[87]     XL Yin, ZJ Wu*,   L Weng, QS Liu, (2023), Numerical simulation of the grouting penetration   process by developing a temperature-dependent spatial-temporal rheological   model, Structural Concrete, 14644177.

[88]   XL Yin, ZJ Wu*,   XY Xu, L Weng, QS Liu, (2023), Numerical investigation on the grouting   penetration process of quick-setting grout in discrete fractured rock mass   based on the combined finite–discrete element method, International Journal   of Geomechanics, Accept.

[89]     J Peng, M Cai, ZJ Wu*,   QS Liu, CH Xu, (2023), Crack initiation stress of thermally damaged rock   under uniaxial compression, Engineering Geology, 326, 107317.

[90]     WJ Cui, QS Liu*, ZJ Wu*, XY Xu, (2023) Fracture   development around wellbore excavation: Insights from a 2D thermo-mechanical   FDEM analysis. Engineering Fracture Mechanics, 109774.

[91]      ZJ Wu*, Y Wu, L Weng*, MY   Li, ZY Wang, ZF Chu. (2024), Machine learning approach to predicting the   macro-mechanical properties of rock from the meso-mechanical parameters.   Computers and Geotechnics, 166: 105933.

   

科研项目

[1] 2016-2019,国家海外引进人才基金优先资助,“岩石多场耦合作用破坏分析”,300万,主持

[2] 2024-2026, 湖北省自然科学基金计划创新群体项目,深部工程安全高效掘进与控制,50万,群体负责人

[3] 2019-2021,湖北省杰出青年基金项目,“深部软弱围岩大变形及锚注加固机理与数值模拟方法”,40万,2019CFA074,主持

[4] 2021-2024,国家自然科学基金面上项目,“深埋软岩隧道破裂-碎胀大变形锚注加固机制及长期稳定性分析预测”,57万,42077246,主持

[5] 2018-2021,国家自然科学基金面上项目,“深长隧道挤压性地层TBM掘进围岩破裂碎胀大变形卡机孕育机理及注浆加固作用机制”,70万,41772309,主持

[6] 2016-2018,国家自然科学基金青年项目,“基于数值流形元法岩石动态破坏及力学性能细观机制研究”,21万,41502283,主持

[7] 2016-2019,武汉大学引进人才自助科研项目,“岩石多场耦合作用破坏分析”,300万,主持

[8] 2017-2020,武汉大学重点领域交叉学科创新团队,“深部工程围岩稳定性分析与控制”, 70万,主持

[9] 2020-2023,国家自然科学基金重大专项,“川藏铁路深埋超长隧道工程灾变机制及防控方法”,1500万,41941018,研究骨干

[10] 2022-2025,国家自然科学基金重点项目,“深部软弱地层TBM掘进挤压变形卡机灾害孕育防控机理及分析方法”,260万元,U21A20153,研究骨干

[11] 2019-2022,国家自然科学基金委员会面上项目,“考虑细观结构和温度作用的花岗岩断裂破坏机理及可压裂性评价研究”,62万元,41877217,研究骨干

[12] 2014-2018,国家973项目,“深部复合地层围岩与TBM的相互作用机理及安全控制”,3000万,2014CB046900,研究骨干

[13] 2018-2022,国家重点研发项目,“基于演化过程的滑坡防治关键技术及标准化体系”,1552万,2017YFC1501300,子课题负责人

[14] 2017-2021,湖北省技术创新专项(重大项目),“城市地下工程突发爆炸致灾机理与安全防控技术”,300万,2017ACA102,研究骨干

奖励荣誉

[1]  2023年,教育部“长江学者”特聘教授

[2]  2023年,中国岩石力学与工程学会自然科学一等奖(排名1)

[3]  2023年,国家教学成果二等奖(排名3)

[4]  2022年,湖北省教学成果特等奖(排名2)

[5]  2022年,中国岩石力学与工程学会第二届“钱七虎奖”(2年仅评选10名)

[6]  2022年,第九届全国“侨界贡献奖”(两年一次,湖北省4人)

[7]  2021年,西藏自治区科技进步一等奖,(排名2/15)

[8]  2019年,西藏自治区科技进步二等奖(排名2/8)

[9]  2019年,湖北省科技进步特等奖,(排名15/30)

[10] 2017年,国际非连续变形分析组织杰出研究者奖

[11] 2015年,中组部第十二批“青年千人计划”